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General Problem

Setting: given direct (ratio) estimates for small proportions

π̂i at level of “cell” or domain i (e.g., county)

Problem: specify upper confidence bound for π̂i

• either bound in transformed measurement scale

h(πi) from data within domain i

• or model-based bound connecting values πi

across domains using predictors xi

Approach: using effective sample-sizes n∗i , adapt
binomial/SRS estimator V̂ ar(π̂i) = π̂i (1− π̂i)/n∗i
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Applications

• demographic tables in ACS,

the American Community Survey;

• area-level Erroneous Enumeration rates in

CCM, Census Coverage Measurement;

• and rates in other Census Bureau surveys.
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A Good Cell-Based Method
Liu and Kott 2009, Survey Methodology

πi = true proportion

n∗i = effective sample size, y∗i ∼ Binom(n∗i , πi)

π̂i =
yi
ni

=
y∗i
n∗i

direct estimator

Transformation: asin(
√
π̂) (Variance-stabilizing)

centered at asin(
√
π) , Var ≈ 1/(4n∗i )

Obtain UCB on arcsin scale,

transform back to prob. scale by sin2(x)
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Ideas of Model-Based Methods

πi includes
{

predicted part ηi = x′i β

unmodeled random component

(1) Fay-Herriot: πi = sin2(ηi+ui), ui ∼ N(0, σ2
u)

(2) Logistic: πi = eηi+vi

1+eηi+vi
, vi ∼ N(0, σ2

v )

(3) Beta-Binomial: πi = Beta( τ eηi
1+eηi ,

τ
1+eηi )

Parameters σ2
u , σ2

v , (1 + τ)−1 quantify

imprecision of πi in terms of ηi
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Model-Based Methods, Continued

Recall y∗i /n
∗
i = π̂i

Fay-Herriot:

arcsin(
√
π̂i) ∼ N(arcsin(

√
πi),

1

4n∗i
)

Logistic & Beta-Binomial:

y∗i ∼ Binom(n∗i , πi)
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Estimation in Model-Based Methods

Point Predictor for πi

generally different from direct estimator

BLUP: E(πi | y∗i )

EBLUP: substitute MLE for β & (σu, σv or τ )

Upper Confidence Bound for πi

based on V̂ ar(EBLUP )
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Defining Effective Sample Size n∗i

If variance Vi
ni

= πi(1−πi)
n∗i

of direct πi estimator in area

i is reliably estimated and sampling fraction f � 1:

DEFFi =
Vi

πi (1− πi)
, n∗i =

ni
DEFFi

What if V̂i is erratic or πi too small ?

Proposal 1: Area size via higher-level DEFF

With V̂ /n = V̂ (π̂), and DEFF at higher (e.g., State) level

DEFF =
V̂

π(1− π)
, n∗i =

ni
DEFF
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Effective Sample Size, Continued

Proposal 2: Eff. size modified by sampling weights

wik indiv.-level sampling weights within area i

n∗i =
ni

DEFF
·
 ∑

kw
2
ik

(
∑
kwik)2

 /
∑
j,kw

2
jk

(
∑
j,kwjk)2



Effective sizes for survey CIs : Liu & Kott 2009

in Bayesian analysis: Chen et al. 2011, Malec 2005
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Data Example

• Census Coverage Measurement (CCM):

◦ evaluation of Census performance.

◦ finds Erroneous Enumeration (EE) rates for

counties in sample.

◦ 170k Housing Units (HUs) and 1,728 counties.

◦ Census publishes detailed estimates for 128

counties with pop. ≥ 500k

11



Specific CCM Details

• National EE rate ≈ 2.7% for metro areas

(Olson, 2012).

• For our 128 counties, P(π̂i = 0) > 0.

EE Rates (i = county, k = HU):

π̂ =
Σj,kWjkYjk

Σj,kWjk
, π̂i =

ΣkWikYik
ΣkWik
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Specific CCM Modeling Details

• Area- or cell-level models, all covariates from Census.

BIC model-selection penalizes max logLik by k ln(n)

(k = # regr. coef’s, n = total sample size).

Our selected model had 5 predictor variables:
• state EE rate, a synthetic estimator;
• area rate of single-unit households;
• area rate of large multi-unit households;
• area rate of urban households;
• area enumeration rate.
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Variability Across Counties

n∗ = Proposal 2 Eff. S.S., n† = Proposal 1 Eff. S.S.

Mean 1st Q Med. 3rd Q
St DEFF 6.8 2.7 3.8 6.9
Cou n∗ 34.6 8.5 15.8 34.2
Cou n∗/n† 1.2 1.1 1.1 1.2

NB: n∗, n† based on counties with ≥ 20 HUs in sample.
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Results

• Inclusion of n∗ led to wider, more conservative

estimates for the UCBs.

• The Fay-Herriot and Logistic methods had slightly

higher means and medians for UCBs for areas

with π̂ ≈ 0, but the Cell and Beta-Binomial meth-

ods had the highest maximum UCBs.

•Overall, all four methods created upper bounds

within a similar range.
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Conclusion & Future Plans

Conclusions:
• For our project, we chose the Cell-Based method. With
the results so close, a simpler method without a specified
regression model was preferrable.
•We used the Proposal 2 n∗i for accurately capturing the
variance because it did not assume SRS or equal weights
within area. Results were more conservative which was a
priority in this case.

Future plans:
• extend approach to other applications
• test performance of DEFF under different assumptions?
• generalized R package for Census Bureau use?
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Thank You!

Email:

aaron.j.gilary@census.gov
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A Cell-Based Method

Variance-Stabilizing transformation to arcsin sqrt scale

of estimated area proportion yi/ni = y∗i /n
∗
i

For area i : πi = true proportion, n∗i = eff. samp. size

y∗i ∼ Binom(n∗i , πi) ≈ N (n∗i πi, n
∗
i πi (1− πi))

arcsin
√
y∗i
n∗i
≈ N (arcsin

√
πi,

1
4n∗i

) ∆-method

Transformed scale 90% CI: arcsin
√
y∗i /n

∗
i ± 1.645/

√
4n∗i

Transform back to the probability scale by sin2(x)
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Models which Borrow Strength across Areas

Notation: π̂i = yi
ni

=
y∗i
n∗i

, âi = arcsin
√
π̂i , ηi = x′i β

xi area-level observed predictors

ui ∼ N (0, σ2
u) , vi ∼ N (0, σ2

v ) random effects

(1) Fay-Herriot : âi = ηi + ui + εi , εi ∼ N (0, 1
4n∗i

)

(2) Logistic Random-Intercept : y∗i ∼ Bin(n∗i ,
eηi+vi

1+eηi+vi
)

(3) Beta-Binomial : y∗i ∼ Bin(n∗i , πi), πi ∼ Beta( τ eηi
1+eηi ,

τ
1+eηi)

Targets for small-area prediction: sin2(ηi + ui) in (1);
eηi+vi

1+eηi+vi
in (2); and πi in (3).
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Fay-Herriot Model UCB

Mod1 (FH): EBLUP π̂i = sin2(θ̂i/n
∗
i ), based on θi = ηi+µi,

θ̂i = γ̂i yi + (1− γ̂i)x′iβ̂ , γ̂i =
σ̂2
u

σ̂2
u + (4ni)−1

UCBi = sin2
(

1

n∗i
(θ̂i+

zα

2
((1−γ̂i) σ̂2

u + (1−γ̂i)2x′i V̂β̂ xi}
1/2)

)

Fay and Herriot (1979), Slud (2012)

NB: includes sample variability of β̂, not σ̂2
u

Rao (2003) has more inclusive formulas for related m̂se
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Logistic Random-Intercept Model-Based UCB

Mod2 (LgstRI): EBLUP π̂i =
g(y∗i + 1, n∗i + 1, η̂i, ω̂

2)

g(y∗i , n
∗
i , η̂, ω̂

2)

where η̂i = x′i β̂ , ω̂2 = σ̂2
v + x′i V̂β̂ xi

g(k, n, η, ω2) =
∫

e(η+ωz)k

(1 + eη+ωz)n
φ(z)dz , φ(·) ∼ N (0,1)

UCBi = π̂i + 1.645
[
g(y∗i + 2, n∗i + 2, η̂, ω̂2)

g(y∗i , n
∗
i , η̂, ω̂

2)
− π̂2

i

]1/2

NB: includes sample variability of β̂, not σ̂2
v .

Jiang and Lahiri 2006, Slud 2012
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Beta-Binomial Model-Based UCB

Mod3 (Beta-Bin): Estimation via Posterior , µi = eηi
1 + eηi ,

πi | y∗i ∼ Beta(τ µi + y∗i , τ (1− µi) + n∗i − y
∗
i )

Empirical Bayes π̂i =
y∗i + τ̂ µ̂i

n∗i + τ̂

• Bootstrap approach to UCB
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