# Small Area Confidence Bounds on Small **Cell Proportions in Survey Populations**

Aaron Gilary, U.S. Census Bureau

Jerry Maples, U.S. Census Bureau

Eric V. Slud, U.S. Census Bureau

Univ. Maryland–College Park

DC-AAPOR / WSS



# Outline

- General Problem
- Cell-Based vs. Model-Based Methods
- Alternative Definitions of *Effective Sample Size*
- Data Example Erroneous Enumeration of HUs in Census Coverage Measurement study (CCM)
- Numerical Results
- Conclusion and Future Plans

# **General Problem**

**Setting:** given direct (ratio) estimates for small proportions  $\hat{\pi}_i$  at level of "cell" or domain *i* (e.g., county)

**Problem:** specify upper confidence bound for  $\hat{\pi}_i$ 

- either bound in transformed measurement scale  $h(\pi_i)$  from data within domain i
- or model-based bound connecting values  $\pi_i$  across domains using predictors  $\mathbf{x}_i$

**Approach:** using *effective* sample-sizes  $n_i^*$ , adapt binomial/SRS estimator  $\widehat{Var}(\widehat{\pi}_i) = \widehat{\pi}_i (1 - \widehat{\pi}_i)/n_i^*$ 

# **Applications**

• demographic tables in **ACS**,

the American Community Survey;

- area-level Erroneous Enumeration rates in **CCM**, Census Coverage Measurement;
- and rates in other Census Bureau surveys.

## A Good Cell-Based Method

Liu and Kott 2009, Survey Methodology

 $\pi_i = \text{true proportion}$ 

 $n_i^* = \text{effective sample size}, \quad y_i^* \sim \text{Binom}(n_i^*, \pi_i)$ 

$$\widehat{\pi}_i = \frac{y_i}{n_i} = \frac{y_i^*}{n_i^*}$$

 $direct\ estimator$ 

Transformation:  $asin(\sqrt{\hat{\pi}})$  (Variance-stabilizing) centered at  $asin(\sqrt{\pi})$  , Var  $pprox 1/(4n_i^*)$ 

Obtain UCB on arcsin scale,

transform back to prob. scale by  $sin^2(x)$ 

### **Ideas of Model-Based Methods**

 $\pi_i \text{ includes } \begin{cases} \text{predicted part } \eta_i = \mathbf{x}'_i \beta \\ \text{unmodeled random component} \end{cases}$ 

(1) Fay-Herriot: 
$$\pi_i = sin^2(\eta_i + u_i), u_i \sim N(0, \sigma_u^2)$$

(2) Logistic: 
$$\pi_i = \frac{e^{\eta_i + v_i}}{1 + e^{\eta_i + v_i}}, v_i \sim N(0, \sigma_v^2)$$

(3) Beta-Binomial: 
$$\pi_i = \text{Beta}(\frac{\tau e^{\eta_i}}{1+e^{\eta_i}}, \frac{\tau}{1+e^{\eta_i}})$$

Parameters  $\sigma_u^2$ ,  $\sigma_v^2$ ,  $(1 + \tau)^{-1}$  quantify imprecision of  $\pi_i$  in terms of  $\eta_i$ 

### Model-Based Methods, Continued

Recall  $y_i^*/n_i^* = \hat{\pi}_i$ 

Fay-Herriot:

$$\operatorname{arcsin}(\sqrt{\widehat{\pi}_i}) ~\sim~ \mathbf{N}(\operatorname{arcsin}(\sqrt{\pi}_i), rac{1}{4n_i^*})$$

Logistic & Beta-Binomial:

 $y_i^* \sim Binom(n_i^*, \pi_i)$ 

### **Estimation in Model-Based Methods**

Point Predictor for  $\pi_i$ 

generally different from direct estimator

**BLUP:**  $E(\pi_i \mid y_i^*)$ 

**EBLUP:** substitute MLE for  $\beta$  & ( $\sigma_u$ ,  $\sigma_v$  or  $\tau$ )

**Upper Confidence Bound** for  $\pi_i$ 

based on  $\widehat{Var}(EBLUP)$ 

### Defining Effective Sample Size $n_i^*$

If variance  $\frac{V_i}{n_i} = \frac{\pi_i(1-\pi_i)}{n_i^*}$  of direct  $\pi_i$  estimator in area *i* is reliably estimated and sampling fraction  $f \ll 1$ :

$$\mathsf{DEFF}_{i} = \frac{V_{i}}{\pi_{i} (1 - \pi_{i})} \quad , \qquad n_{i}^{*} = \frac{n_{i}}{\mathsf{DEFF}_{i}}$$

What if  $\hat{V}_i$  is erratic or  $\pi_i$  too small?

Proposal 1: Area size via higher-level DEFF With  $\hat{V}/n = \hat{V}(\hat{\pi})$ , and DEFF at higher (e.g., State) level

$$\mathsf{DEFF} = rac{\widehat{V}}{\pi(1-\pi)}$$
 ,  $n_i^* = rac{n_i}{\mathsf{DEFF}}$ 

### **Effective Sample Size, Continued**

Proposal 2: Eff. size modified by sampling weights

 $w_{ik}$  indiv.-level sampling weights within area i

$$n_i^* = \frac{n_i}{\mathsf{DEFF}} \cdot \left(\frac{\sum_k w_{ik}^2}{(\sum_k w_{ik})^2}\right) / \left(\frac{\sum_{j,k} w_{jk}^2}{(\sum_{j,k} w_{jk})^2}\right)$$

Effective sizes for survey Cls : Liu & Kott 2009 in Bayesian analysis: Chen et al. 2011, Malec 2005 10

# Data Example

- Census Coverage Measurement (CCM):

   evaluation of Census performance.
   finds Erroneous Enumeration (EE) rates for counties in sample.
  - o 170k Housing Units (HUs) and 1,728 counties.
  - $\circ$  Census publishes detailed estimates for 128 counties with pop.  $\geq$  500k

### **Specific CCM Details**

- National EE rate  $\approx$  2.7% for metro areas (Olson, 2012).
- For our 128 counties,  $P(\hat{\pi}_i = 0) > 0$ .

EE Rates (i = county, k = HU):

$$\widehat{\pi} = \frac{\sum_{j,k} W_{jk} Y_{jk}}{\sum_{j,k} W_{jk}} \quad , \qquad \widehat{\pi}_i = \frac{\sum_k W_{ik} Y_{ik}}{\sum_k W_{ik}}$$

### **Specific CCM Modeling Details**

• Area- or cell-level models, all covariates from Census.

BIC model-selection penalizes max logLik by  $k \ln(n)$ 

(k = # regr. coef's, n = total sample size).

Our selected model had 5 predictor variables:

- <u>state EE rate</u>, a synthetic estimator;
- area rate of single-unit households;
- area rate of large multi-unit households;
- area rate of <u>urban</u> households;
- area enumeration rate.

## Variability Across Counties

 $n^*$  = Proposal 2 Eff. S.S.,  $n^{\dagger}$  = Proposal 1 Eff. S.S.

|     |                 | Mean | 1st Q | Med. | 3rd Q |
|-----|-----------------|------|-------|------|-------|
| St  | DEFF            | 6.8  | 2.7   | 3.8  | 6.9   |
| Cou | $n^*$           | 34.6 | 8.5   | 15.8 | 34.2  |
| Cou | $n^*/n^\dagger$ | 1.2  | 1.1   | 1.1  | 1.2   |

**NB:**  $n^*$ ,  $n^{\dagger}$  based on counties with  $\geq 20$  HUs in sample.

# Results

- Inclusion of  $n^*$  led to wider, more conservative estimates for the UCBs.
- The Fay-Herriot and Logistic methods had slightly higher means and medians for UCBs for areas with  $\hat{\pi} \approx 0$ , but the Cell and Beta-Binomial methods had the highest maximum UCBs.
- Overall, all four methods created upper bounds within a similar range.

## UCB of Production Counties where $\hat{\pi_i} = 0$



# **Conclusion & Future Plans**

#### Conclusions:

• For our project, we chose the Cell-Based method. With the results so close, a simpler method without a specified regression model was preferrable.

• We used the Proposal 2  $n_i^*$  for accurately capturing the variance because it did not assume SRS or equal weights within area. Results were more conservative which was a priority in this case.

#### Future plans:

- extend approach to other applications
- test performance of DEFF under different assumptions?
- generalized R package for Census Bureau use?

### References

- Chen, C., Lumley, T. and Wakefield, J. (2011), *The Use of Sampling Weights in Bayesian Hierarchical Models for Small Area Estimation*. U. Wash. Stat. Dept. Tech. Rep. #583.
- Fay, R. and Herriot, R. (1979, JASA).
- Liu, Y. and Kott, P. (2009, Jour. Official Stat.)
- Malec, D. (2005, Jour. Official Stat.) Small Area Estimation ... Housing Units.
- Maples, J., Bell, W. and Huang, E. (2009 ASA Proc.) GVF's for area-level variances
- Olson, Doug (2012). 2010 Census Coverage Measurement Report on Modeling. DSSD #2010-G-13.

Prentice, R. (1986, JASA) Beta-binomial regression

Slud, Eric V. (2012). Small-Area Confidence Bounds . . . in Tables. Jour. Indian. Soc. Agric. Stat.

## **Thank You!**

Email:

aaron.j.gilary@census.gov

### A Cell-Based Method

Variance-Stabilizing transformation to *arcsin sqrt* scale of estimated area proportion  $y_i/n_i = y_i^*/n_i^*$ 

For area *i* :  $\pi_i$  = true proportion,  $n_i^*$  = eff. samp. size

$$y_i^* \sim Binom(n_i^*, \pi_i) \approx \mathcal{N}(n_i^* \pi_i, n_i^* \pi_i (1 - \pi_i))$$

$$\arctan \sqrt{\frac{y_i^*}{n_i^*}} \approx \mathcal{N}(\arcsin \sqrt{\pi_i}, \frac{1}{4n_i^*}) \qquad \Delta \text{-method}$$

Transformed scale 90% CI: arcsin  $\sqrt{y_i^*/n_i^*} \pm 1.645/\sqrt{4\,n_i^*}$ 

Transform back to the probability scale by  $sin^2(x)$ 

#### Models which Borrow Strength across Areas

Notation:  $\hat{\pi}_i = \frac{y_i}{n_i} = \frac{y_i^*}{n_i^*}$ ,  $\hat{a}_i = \arcsin\sqrt{\hat{\pi}_i}$ ,  $\eta_i = \mathbf{x}'_i \beta$  $\mathbf{x}_i$  area-level observed predictors  $u_i \sim \mathcal{N}(0, \sigma_u^2), v_i \sim \mathcal{N}(0, \sigma_v^2)$  random effects (1) Fay-Herriot:  $\hat{a}_i = \eta_i + u_i + \epsilon_i$ ,  $\epsilon_i \sim \mathcal{N}(0, \frac{1}{4n^*})$ (2) Logistic Random-Intercept :  $y_i^* \sim Bin(n_i^*, \frac{e^{\eta_i + v_i}}{1 + e^{\eta_i + v_i}})$ (3) Beta-Binomial:  $y_i^* \sim \text{Bin}(n_i^*, \pi_i), \ \pi_i \sim \text{Beta}(\frac{\tau e^{\eta_i}}{1 + e^{\eta_i}}, \frac{\tau}{1 + e^{\eta_i}})$ Targets for small-area prediction:  $\sin^2(\eta_i + u_i)$  in (1);  $\frac{e^{\eta_i + v_i}}{1 + e^{\eta_i + v_i}}$  in (2); and  $\pi_i$  in (3).

### **Fay-Herriot Model UCB**

**Mod1 (FH):** EBLUP  $\hat{\pi}_i = \sin^2(\hat{\theta}_i/n_i^*)$ , based on  $\theta_i = \eta_i + \mu_i$ ,

$$\hat{\theta}_{i} = \hat{\gamma}_{i} y_{i} + (1 - \hat{\gamma}_{i}) \mathbf{x}_{i}' \hat{\beta} , \quad \hat{\gamma}_{i} = \frac{\hat{\sigma}_{u}^{2}}{\hat{\sigma}_{u}^{2} + (4n_{i})^{-1}}$$
$$UCB_{i} = \sin^{2} \left( \frac{1}{n_{i}^{*}} (\hat{\theta}_{i} + \frac{z_{\alpha}}{2} ((1 - \hat{\gamma}_{i}) \hat{\sigma}_{u}^{2} + (1 - \hat{\gamma}_{i})^{2} \mathbf{x}_{i}' \hat{V}_{\beta} \mathbf{x}_{i} \}^{1/2}) \right)$$

Fay and Herriot (1979), Slud (2012)

**NB:** includes sample variability of  $\hat{\beta}$ , not  $\hat{\sigma}_u^2$ Rao (2003) has more inclusive formulas for related  $\widehat{\text{mse}}$ 

#### Logistic Random-Intercept Model-Based UCB

**Mod2 (LgstRI):** EBLUP 
$$\hat{\pi}_i = \frac{g(y_i^* + 1, n_i^* + 1, \hat{\eta}_i, \hat{\omega}^2)}{g(y_i^*, n_i^*, \hat{\eta}, \hat{\omega}^2)}$$

where  $\hat{\eta}_i = \mathbf{x}'_i \hat{\beta}$ ,  $\hat{\omega}^2 = \hat{\sigma}_v^2 + \mathbf{x}'_i \hat{V}_{\hat{\beta}} \mathbf{x}_i$   $g(k, n, \eta, \omega^2) = \int \frac{e^{(\eta + \omega z)k}}{(1 + e^{\eta + \omega z})^n} \phi(z) dz$ ,  $\phi(\cdot) \sim \mathcal{N}(0, 1)$  $[a(u^* + 2, n^* + 2, \hat{n}, \hat{\omega}^2) = \alpha^{1/2}$ 

$$UCB_{i} = \hat{\pi}_{i} + 1.645 \left[ \frac{g(y_{i}^{*} + 2, n_{i}^{*} + 2, \eta, \omega^{2})}{g(y_{i}^{*}, n_{i}^{*}, \hat{\eta}, \hat{\omega}^{2})} - \hat{\pi}_{i}^{2} \right]^{1/2}$$

**NB:** includes sample variability of  $\hat{\beta}$ , not  $\hat{\sigma}_v^2$ . Jiang and Lahiri 2006, Slud 2012

### **Beta-Binomial Model-Based UCB**

**Mod3 (Beta-Bin):** Estimation via Posterior ,  $\mu_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$ ,  $\pi_i | y_i^* \sim \text{Beta}(\tau \mu_i + y_i^*, \tau (1 - \mu_i) + n_i^* - y_i^*)$ Empirical Bayes  $\hat{\pi}_i = \frac{y_i^* + \hat{\tau} \hat{\mu}_i}{n_i^* + \hat{\tau}}$ 

• Bootstrap approach to UCB